

Rose/Architect: a tool to visualize architecture

 Alexander Egyed Philippe B. Kruchten
 University of Southern California Rational Software
 Center for Software Engineering 638-650 West 41st Avenue
 Los Angeles, CA 90089-0781, USA Vancouver, BC V5Z 2M9, Canada
 aegyed@sunset.usc.edu pkruchten@rational.com

Abstract
Rational Rose is a graphical software modeling tool,

using the Unified Modeling Language (UML) as its
primary notation. It offers an open API that allows the
development of additional functionality (“add-ins”). In
this paper, we describe Rose/Architect, a Rose™ “add-in”
used to visualize architecturally-significant elements in a
system’s design, developed jointly by University of
Southern California (USC) and Rational Software.
Rose/Architect can be used in forward engineering,
marking architecturally significant elements as they are
designed and extracting architectural views as necessary.
But it can be even more valuable in reverse engineering,
i.e., extracting missing key architectural information from
a complex model. This model may have been reverse-
engineered from source code using the Rose reverse
engineering capability.

1. Introduction

Mastering complexity through abstractions is an old
engineering technique that worked its way into software
engineering practices. Graphical representations,
formalisms, and other techniques were found to be of great
value, and software engineers soon identified a myriad of
development techniques which provide some level of
abstraction, each technique having unique features and
often tailored to a particular viewpoint or domain.

It was only natural that people started to combine these
techniques into development methodologies, which
worked well, and seemed to cover the most important and
interesting viewpoints of the development process [4].
Over time, more standardized development models
emerged, providing more general models, which in turn
were applicable to a larger domain of software-intensive
systems. The Unified Modeling Language (UML) [3] and
the 4+1 view model [6] are a result of the endeavor to
unify object-oriented analysis and design techniques and
their associated diagrams into a common model.

The abstractions provided through these modeling
languages and their various diagrams have proven to be of

great value in dealing with the complexity in software
systems [5]. However, software systems have grown even
more complex and the view abstractions - now starting to
contain too many model elements - are in need of further
abstractions, or architectural views. For example, Boehm
et al. [2] show the results from an Architecture Workshop
at USC where representatives from industry (both defense
and commercial) identified the three most important
challenges in architecture research: better formalisms,
more scalability, and view needs.

2. Rose/Architect

Rose/Architect is one attempt to deal with complexity
by using patterns and heuristics to extract relevant
information from a system’s model. Figure 1 shows the
conceptual model of Rose/Architect. The system model,

System Model

Simplified
View

abstract

Architect 2 Architect n...Architect 3

RA Tool

Architect 1

reconcile

Figure 1: Rose/Architect (RA) concept

Published in the Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences (HICSS’99)

created using Rational Rose and Rose/Architect as an add-
on to Rose, can abstract information from that Rose
model. Even though the architects use and revise some of
the same model elements while working on the same
project, they may use them in a different context.
Therefore, Rose/Architect creates a working environment
in which a number of needs are supported:

• Abstraction: Use a subset of the model elements of the

system model, which is sufficient for the developers’
purpose. This step has the advantage that the resulting
smaller model is less complex and therefore easier to
comprehend and to modify.

• ‘What happens if…’ questions: A change of a model

element in the system model could immediately affect
any number of other developers if they use the same
model element(s). By extracting a subset of the
system model, developers can experiment with it
independently. After completing the task, add-ons and
changes are then reconciled with the original model.

The abstraction lets the developer (architect, etc.) focus

on those model elements which are important for a
particular task. The architect can then solve the
‘simplified’ problem (based on a subset of model
elements) and reconcile these changes with the original
system model after the task has been completed.

3. Abstraction

As mentioned earlier, Rose/Architect uses patterns and
heuristics to deal with complexity. So far, we have only
analyzed class diagrams (object diagrams). However, the
technique described in this paper is applicable to other
diagrammatic representations, called views. The technique
utilizes the fact that some structures in views (e.g.
collections of classes and their relationships in class
diagrams) exhibit some recurring characteristics or
patterns. This observation can be used to our advantage in
many ways.

In Rose/Architect, we use patterns to define transitive
relationships between classes. In class diagrams, a
transitive relationship describes the relationship between
classes which are not directly connected. A relationship,
however, may exist through other classes (e.g. helper
classes) which form a bridge between them. Thus, if some
formula is discovered which could, with sufficient
accuracy, derive a transitive relationship from the existing
model, then some automatic support in simplifying and
abstracting class diagrams could be provided in tool form.

This would allow architects to abstract important classes
from an existing model by eliminating the ‘helper classes’
and it would enable them to portrait and analyze the
interrelationships between classes even if the classes were
scattered throughout different locations (e.g. in different
diagrams, or in different packages and name spaces). This
paper will present a method automatically to derive
transitive relationships.

4. UML Class Diagrams

We will briefly describe the notation of class diagrams
in UML to explain the abstraction mechanism for class
diagrams [3]. The two basic elements of UML class
diagrams are components (e.g. class and package) and
connectors (e.g. generalization, aggregation, and
dependency). Components (also called model elements in
UML) are categorized into a number of types, each having
unique properties. Connectors depict relationships, or
links, between components and may be constrained to a
subset of components. Both components and connectors
are first-class citizens in UML. This means that
information can be ‘attached’ to them, which helps to
further specify or characterize them (e.g. stereotypes,
constraint, attributes, and operations.). This fact is very
useful because components and connectors further refine
the nature of the model elements and their relationship,
which makes it possible to improve the accuracy of the
abstraction mechanism.

4.1. Components

Components in class diagrams are, for the most part,
classes and packages. Packages allow collections of
classes and class hierarchies to be formed as a means of
abstraction. There are other components such as
instantiated classes but we will not use them in this paper
since they are not relevant given the limited level of detail
presented here. Furthermore, classes and packages are the
most commonly used components and it is sufficient to
initially concentrate on them.

4.2. Connectors

UML class diagrams support a number of connectors,
most of which are unidirectional except for association-
like connectors (see Table 1). Connectors, like
components, may have additional attributes associated
with them, such as stereotypes or constraints.

Or combinations
of these

XXX XXX

Pattern #1

Pattern #2

Pattern #3

Examples

XXXXXX

DA ?

DA

?

XXX CA

?

A2

C3A3 XXX

A1

C2XXX

XXX C1

Figure 2: Simple patterns and examples of their use

As with components, we will only look at a subset of
connectors. All other connectors are based on one of the
three basic connectors—Association, Dependency, and
Generalization. These three, together with Aggregation,
are also the most commonly used connectors.

Some components may only be used with some
connectors. For instance, only dependency connectors are
allowed between packages. This issue becomes more
complex if all components and connectors -- and their
transitive relationships -- are analyzed.

5. Transitive Relationships

Transitive Relationships are the core of Rose/Architect
because they provide the means of abstraction. The main
challenge during abstraction is to
exclude less important model
elements (classes and packages
in class diagrams) and to only
show the relationships of the
remaining model elements. The
problem is that the relationships
of the remaining model elements
are often not explicitly stated as
that is what the other model
elements were used for in the
beginning.

Transitive relationships may
be used to replace these less
important classes and thus
reduce the overhead of having
too many classes in one view.
Since these less important
classes were introduced later on
in the life-cycle you may assume
that the transitive relationships
could be derived from the higher
level abstractions represented in
the logical diagrams. This is
possible if the ‘trace’ from the
logical stage to the physical
stage was created and maintained
properly but that is not always
the case. Even if it is the case,
the higher level views (e.g.
logical diagrams) may already be

too complex and may be in need of abstraction. Another
problem is that different developers have different needs
when it comes to abstractions. To support all of the
developer’s needs during the entire lifecycle, a large
quantity of class diagrams would have to be created which
would require more effort, and increase the risk of
inconsistencies in the diagrams.

Therefore, it should be the developer’s goal to keep the
number of classes, class diagrams, and their various
abstractions to a minimum. Relationships that can be
derived automatically don’t need to be created and
maintained manually. This reduces the development effort
and the risk of inconsistencies. This is where transitive
relationships become important.

5.1. Patterns

Transitive relationships are usually based on patterns
that can be replaced by simpler patterns, which can be
further simplified if necessary. Since connectors in UML
generally flow in one direction, it is necessary to
differentiate between patterns made up of flows in
different directions.

Table 1: Types of connectors

 Connectors Instance of Direction of Flow
1 Aggregation Association Unidirectional

2 Association
Unidirectional
Bidirectional

3 Dependency Unidirectional
4 Generalization Unidirectional

Figure 2 shows the three possible combinations in a
simple three component setting (replacing three
components with two is the simplest setting – the
technique works just as well with more complex patterns).
If more than three components are involved then a
combination of the three basic patterns are possible (see
examples). The three examples in Figure 2 show
collections of classes where those classes marked with
‘XXX’ will be eliminated. The goal is to find the transitive
relationships between the remaining ones. The first
example shows pattern #1 twice in a series. Similarly, the
third example may be seen as a combination of pattern #1
and pattern #3. The second example has a bi-directional
flow and there pattern #1 and pattern #3 would also apply.

In cases where simple patterns are combined to make
more complex ones, the order in which patterns should be
applied first becomes an issue. Another challenge is when
structures of classes may be resolved in different ways
which leads to different outcomes. The question then
becomes which pattern to apply and when. Therefore,
patterns — and the rules on how to apply them — must be
defined.

5.2. Rules

Figure 3 shows a simple setting in which the basic rule
defines a mapping between three components (containing
two connectors) and between two components (containing
one connector). This rule represents the simplest structure,
however, as noted earlier, the concept would also work for
more complex input and output patterns.

The first row indicates the input pattern, which must be
mapped onto a result pattern in the second row. In this
mapping, the first component and the last component in
the input and the result pattern are always the same. Both
patterns must be based on the UML notation (it was
explained previously in this article that some connector-
component patterns are illegal).

Since the patterns and rules are based on heuristics, the
rules may not always be valid. A form of priority setting
can be used to distinguish more reliable rules from less

valid ones. This priority setting can also be used when
deciding which rules to use when. Basically, more
predictable rules should be applied first.

Unfortunately, all possible combinations of components
and connectors would total more than 4,000 combinations;
and this does not include stereotypes or other
distinguishing attributes supported in UML. If they were
included, then probably millions of rules would have to be
defined. Fortunately, some combinations are not possible
(for example, are illegal in UML) and many others can be
merged together. Table 2 shows some of the rules which
can be defined using the previous pattern structure. In the
table, each row shows one rule with the pattern described
in Figure 3. The arrow next to the connectors indicates the
direction of the flow. Results denoted with an ‘xxx’
indicate that there is no useable result (the pattern cannot
be simplified). Sometimes, a weak result is given which
may have a higher risk of failure when used.

6. Simple Example

Figure 4 gives a simple example of how the rules are
applied to generate a simpler, more abstract class diagram
from a collection of three diagrams. Class diagram 1
shows the relationships between people in a simplified Air
Traffic Control system. It depicts a parent class Person for
the main actors Pilot and Passenger (generalization
connectors are used). Diagram 2 describes the Flight
which has a Location at any given time and which uses an
Aircraft as a vehicle (aggregation connectors are used).
Diagram 3 shows the relationship of the people and the
Aircraft (dependency connectors are used).

Using these three diagrams as input to our
Rose/Architect model, we can generate a simpler model
which only shows the relationships between Person, Pilot,
and Flight. Since these components are not connected
directly to each other in the input class diagrams,
Rose/Architect derives the relationships using the rules
defined in the previous section. The connector names in
Figure 4 are preceded by ‘RAGen’ which indicates that
they are names generated by Rose/Architect. The

Input
Component

«Stereotype»
x

Connector

«Stereotype»
x

Component

«Stereotype»
x

Connector

«Stereotype»
x

Component

«Stereotype»

Result
Component

«Stereotype»
x

Connector

«Stereotype»
x

Component

«Stereotype»

Resulting patterns must be legal according to UML rules

Figure 3: Simple rule input and result pattern

information after that describes how this relationship was
found.

For instance, between Flight and Person, there is a
transitive relationship from Flight to Aircraft to Passenger
and finally to Person. Figure 5 shows that process.
Aircraft can be eliminated by applying Rule 59 and
Passenger can be eliminated by applying Rule 6. Note that

the process looks a little different if Passenger is
eliminated first (Rule 6 would be applied first, followed by
Rule 59). In this example, the result is the same but this
may not always be the case.

Table 2 : Some rules

Rule Component Connector � Component Connector � Component

Generalization � Class Generalization � 1 Class
Generalization �

Class

Generalization � Class Dependency � 2 Class
Dependency �

Class

Generalization � Class Association � 3 Class
Association �

Class

Generalization � Class Aggregation � 4 Class
Aggregation �

Class

Generalization � Class Composition � 5 Class
Composition �

Class

Dependency � Class Generalization � 6 Class
or weak Dependency �

Class

Dependency � Class Dependency � 7 Class
Dependency �

Class

Dependency � Class Association � 8 Class
×××

Class

[…]

Association � Class � Association
38 Class

×××
Class

Association � Class � Aggregation
39 Class

weak Association �
Class

Association � Class � Composition
40 Class

weak Association �
Class

[…]

� Generalization Class Aggregation � 54 Class
weak Aggregation �

Class

� Generalization Class Composition � 55 Class
weak Composition �

Class

� Dependency Class Generalization �
56 Class

×××
Class

� Dependency Class Dependency �
57 Class

×××
Class

� Dependency Class Association �
58 Class

×××
Class

� Dependency Class Aggregation �
59 Class

� Dependency
Class

� Dependency Class Composition �
60 Class

� Dependency
Class

7. Using Planes to Add Structure

So far we have introduced how rules and
patterns can be found and how they are
used by the Rose/Architect tool. However,
we have not talked about how an architect
uses the tool. For the tool to be useful, the
architect must have a way of organizing the
classes. For instance, the tool cannot decide
which classes are important and which ones
are merely helper classes, as this may
depend on the viewpoint of the analysis.
For example, a helper class in one view
may be an important class in another one.

Flight Pilot

Person

RAGen:
vehicle aircraft

is-used-by passenger
is-a

RAGEN:
vehicle aircraft
is-piloted-by

RAGen:
is-a employee

is-a

Person

Employee

Passenger

Pilot

is-a

is-a

is-a

Class Diagram 1

Class Diagram 2

Location

Flight

has

Aircraft vehicle

Generated with
Rose/Architect

Class Diagram 3

Passenger

Pilot

Aircraft
is-used-by

is-piloted-by

Figure 4: Simple example of RA generated abstraction from three input diagrams

Passenger PersonAircraftFlight
vehicle

is-used-by is-a

Passenger PersonFlight is-aRAGen

PersonFlight RAGen

Use Rule 59

Use Rule 6

Figure 5: Generating transitive relationship from Flight to Person

Table 3: Different views in an Air Traffic Control System

Air Traffic Control System (ATCS)
Life-Cycle Layers Diagrams Stakeholder Domain

Logical
Physical

Implementation

ATCS UI
ATCS Components
ATCS Framework

Distributed Virtual Machine
Basic Elements

Class Diagram
Use Case Diagram

Collaboration Diagram
Sequence Diagram

Component Diagram
State Transition Diagram

Developer1
Developer 2

Tester

Specific
Independent

For that purpose, we introduce the
concept of planes.

Table 3 shows an example of a
number of possible planes for our
simplified Air Traffic Control
System where planes support the
logical grouping of classes (not
connectors). Depending on the
viewpoint of the architect, classes
may belong to one or more planes.
For instance, a class may be a part of
the logical (high-level) design; it
may be a part of the user interface; it
may have been created by a
particular developer; and it may be
domain specific.

If the architect wishes to analyze
the most important classes of the
logical view, the results will be
different if he or she were to look at

Figure 6: Simple Air Traffic Control System model in Rational Rose

Class D

Class B

Class G

Class F

Plane 1 Plane 2 Plane 3 Plane 4

Class B

Class G

Class C
Class C

Class A

Figure 7: Classes and Planes

the most important user interface classes (though they may
overlap). For that purpose, architects may group classes
(or other model elements) into planes (see Figure 6) for
further analysis.

Rose/Architect can then take a plane (or a combination
of planes) and create an abstract view - containing only
those classes and their perceived relationships -by
applying the mechanism explained in the previous section.

8. Example of Rose/Architect

To provide some understanding of what the
Rose/Architect tool currently looks like and how it is used,
we will show you a simple example of the look and feel of
the tool using our simplified Air Traffic Control System
example. The reader doesn’t need to understand the details
of this example, which contains approximately 40 classes.
The classes are grouped in 6 packages with about the same
number of diagrams depicting their relationships. Figure 7
shows one diagram which depicts the interaction of the Air
Traffic Controller and the Pilot (note that this example
shows a more complex environment than the previous
one).

With the help of Rose/Architect, the developer can now
assign each model element (class and package) to a set of
planes (Figure 8). For instance, we may want to abstract
the most important classes from the model to see their
relationships. Therefore, we would assign all important
classes to a plane and apply the rules defined above to
filter the original Rose model.

The result of that process would be another Rose model
containing only the important classes that we defined in
the plane, including their real and hypothesized
relationships (see Figure 8). The window in the upper right
is used to associate classes and packages to planes and it
shows the current rules (input and output pattern). Rules
can be modified or added. Selecting a plane and filtering
the model (not shown here) leads the architect back to the
Rose tool which displays the simplified model containing
only those classes which were a part of the selected
plane(s). Automatically generated relationships are labeled
RAGen (see lower half of picture).

8. Future work

The Rose/Architect tool and model are still in a
prototype stage. The tool does not implement the entire
model, e.g., the concept of priority of rules is not
implemented and the names of automatically generated
relations (currently called ‘RAGen’) are not very
meaningful. However, the model can also be improved in
many ways. Some of the major issues we have not dealt
with are:

• Supporting other views (diagrams): Currently the
model uses class diagrams only. Since class diagrams
are not the only views which exhibit patterns, the
model can be applied to other types of diagrams.

• Incorporating ‘remembering’: Since the model is
based on heuristics, the results it produces will not
always be correct. We would like to extend the model
so that the tool remembers the errors it made, and how
to avoid them the next time the same (subset of)
model elements are used.

• Reconciling views: This is an aspect we briefly
discussed but which deserves more attention. The
purpose of Rose/Architect is to provide a simplified
working environment where model elements which
are not that important for a particular task are
excluded from the developer’s vision. However,
changes made to the simplified model must be
reconciled with the original model. This can become
difficult if those changes affect other, previously
excluded, helper classes.

• Improving the accuracy of the model: The accuracy
of the model can be improved by examining the
additional attributes that model elements provide.
Both components and connectors have stereotypes
and other attributes which describe them in more
detail. Therefore, more and better rules can be
designed using that information. However, a
drawback to this approach is the potential explosion in
the number of rules and how to efficiently deal with
that. A possible way to minimize this drawback is by
examining more complex input and result patterns
instead of just the simple three to two component
setting.

• Integrating the model and the tool with other
software architecture models and tools: This may
also be seen as an additional step towards improving
the accuracy of Rose/Architect because if the RA
model is integrated with other models, then the
additional information provided by those models can
be used to refine the existing rules and patterns
thereby achieving a more accurate model.

In addition to the necessary improvements listed in the

previous section, we are faced with the challenge of
validating the Rose/Architect model. We can only
speculate about its accuracy until it is tested in the real-
world using real product models. A possible solution,
which we are currently investigating, is a collection of
real-world projects conducted at the University of
Southern California (USC). There, 17 student teams
developed products for their customer, the USC Library
(see [2] for a more detailed description). Each team used a
number of engineering techniques and tools, such as
Rational Rose/UML, the 4+1 view model [6], the Rational
Unified Process [7, 8], and many more, to develop

multimedia-related library products. We hope that the
architectural designs of those models can be used to

perform a first iteration of the validity of the
Rose/Architect model.

Figure 8: Planes and rules in Rose/Architect (above); abstracted Rose model (below)

9. Conclusions

Software models can be very complex and end up
containing several thousand modeling elements, and that
makes discovering and visualizing the essential structures
of a system difficult, more so than the simple hierarchical
packaging of these elements. Rose/Architect offers its
users a large number of planes, that can be named and
organized in groups. Modeling elements, such as classes,
objects, and packages, can be associated with specific
planes by the architect. The tool then visualizes, on
demand, one plane or a set of planes, reconstructing
missing relationships between elements using user-
definable heuristics. The proposed changes are then
captured in the form of Rose scripts that can be later
played against the original model.

The heuristic-based approach of Rose/Architect is
useful in forward engineering and backward engineering.
In forward engineering, architecturally significant
elements are marked and extracted into individual
architectural views. In backward engineering, it can be
used to extract missing key architectural information from
a more complex model.

Transitive relationships can represent model elements
from a different viewpoint, and can be used to verify the
conceptual integrity and consistency of a model. For
instance, a lower-level class model can be simplified to
higher-level class diagrams and then cross-referenced with
the existing higher-level class diagrams. Discrepancies
between them may indicate inconsistencies within the
model.

Acknowledgements

We would like to thank Mircea Bacinski from
Ensemble Systems, Richmond, BC, Canada for the initial
implementation of the Rose/Architect prototype, and
Pamela Clarke for editing our manuscript.

References

[1] Boehm, B. W., Egyed, A., and Gacek, C., editors.
Knowledge Summary: USC-CSE Focused Workshop on
Software Architectures II, Center for Software Engineering,
University of Southern California, Los Angeles, CA, 90089-
0781, 12-14 November 1997.

[2] Boehm, B.W., Egyed, A. F., Kwan, J., Madachy, R, Port,
D., and Shah, A., “Using the WinWin Spiral Model: A Case
Study,” IEEE Computer 31(7), July 1998, pp.33-44.

[3] Booch, G., Jacobson, I., and Rumbaugh, J., “The Unified
Modeling Language for Object-Oriented Development,”
Documentation set, version 1.3, Rational Software
Corporation, 1998.

[4] Finkelstein, A, Kramer, J., Nusibeh, B., Finkelstein, L., and
Goedicke, M., “Viewpoints: A Framework for Integrating
Multiple Perspectives in System Development,”
International Journal on Software Engineering and
Knowledge Engineering, March, pp. 31-58, 1991.

[5] IEEE, “Recommended Practice for Architectural
Description,” Draft Std. P1471, IEEE, 1998.

[6] Kruchten, P., “The 4+1 view model of architecture,” IEEE
Software 12 (6), November 1995. pp.42-50

[7] Kruchten, P., The Rational Unified Process–An
Introduction, Addison-Wesley-Longman, Reading, Ma,
1998.

[8] Rational Software, The Rational Unified Process, version
5.0, Cupertino, CA, 1998.

